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I. INTRODUCTION 

Guided waves in plates, which are known as Lamb waves, are of considerable practical interest 

for both nondestructive evaluation and structural health monitoring because of their ability to 

propagate relatively long distances while still maintaining sensitivity to damage [1,2].  Because 

of the long propagation distances, particularly as compared to most bulk wave NDE methods, 

Lamb wave are particularly sensitive to changes in the propagation environment, such as 

temperature, stress and surface conditions [3,4,5].  Here we consider the effect of stress on Lamb 

waves propagating in homogeneous and initially isotropic plate subjected to a homogeneous 

biaxial stress field. 

 The theory to explain the dependence of wave speed on stress, or acoustoelasticity, was 

developed by Hughes and Kelly by applying the Murnaghan theory of finite deformation to 

propagation of bulk elastic waves in an initially isotropic solid subjected to a static 

predeformation [6].  They specifically consider the cases of hydrostatic pressure and uniaxial 

compressive stresses and derive expressions for changes in shear and longitudinal wave speeds 

as a function of applied stress for known material properties.  Their work was extended to 

materials of arbitrary symmetry by Toupin and Bernstein [7].  One motivation of this early work 

in acoustoealasticity was measurement of third order elastic constants; however, this focus was 

largely shifted to  measurement of both applied and residual stresses [8,9].  The comprehensive 

article in [10] provides a thorough treatment of acoustoelasticity with an emphasis on stress 

measurements via shear wave birefringence. 

 Acoustoelastic Rayleigh waves have also been quite thoroughly investigated, e.g., [11,12], 

but there are significantly fewer published works on acoustoelastic Lamb waves.  Husson [13] 

considered acoustoelastic Lamb waves from a theoretical point of view and, among other things, 
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predicted a strong frequency dependence of the acoustoelastic constants.  Qu and Liu [14] 

generated dispersion curves for waves propagating in a stressed aluminum plate, but did not 

investigate dependence on the direction of propagation.  Rizzo and Lanza di Scalea [15] 

measured changes in wave speed with tensile loads for guided waves in bars, and found a strong 

frequency dependence of the acoustoelastic constants.  Lematre et al. [16] developed theory for 

Lamb wave propagation in stressed piezoelectric plate structures but showed only numerical 

results for propagation along the direction of the applied uniaxial load.  An in situ structural 

health monitoring experiment by Michaels et al. [17] clearly show changes in wave speed as a 

function of direction of propagation, but no theory is presented.  The semi-analytical finite 

element method has been applied to acoustoelastic wave propagation in bar-like structures (i.e., 

rails) [18]. 

 In this paper the theory of acoustoelastic Lamb wave propagation in a homogeneous and 

initially isotropic plate is developed for an applied homogeneous biaxial stress by combining the 

theories of bulk wave acoustoelasticity and anisotropic guided wave propagation.  The resulting 

analytical equations are solved numerically to show the anisotropic changes in dispersion for 

various applied stresses, and these changes are validated via experiments using an aluminum 

plate.  Preliminary results of this present study have been previously reported by the authors 

[19,20].    

II. REVIEW OF BULK WAVE ACOUSTOELASTICITY 

The theory of bulk wave acoustoelasticity is reviewed here following the development of Pao 

and Gamer [21].  Referring to Figure 1, a body is deformed from its unstressed, or natural, state, 

to a statically deformed, or initial, state; the final state is that of wave motion superposed on the 

initial state.  Coordinates ξ refer to a material point in the natural state, coordinates X refer to a 
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material point in the initial state, and coordinates x to a material point in the final state.  

Deformations between the various states; i.e., natural to initial, natural to final, and initial to 

final, are given by u
i
, u

f
, and u, respectively: 

 

i

f

f i

( ) ,

( , ) ,

( , ) ( , ) ( ).

t

t t

 

 

   

u ξ X ξ

u ξ x ξ

u ξ x X u ξ u ξ

 (1) 

To describe wave propagation in a stressed medium, the equation for u, the incremental 

deformation between the initial and final states in a pre-stressed medium must be obtained. 

 Keeping the same convention as is used in [21], Greek subscripts indicate that the 

quantities are expressed in terms of the natural, or unstressed coordinates.  Lagrangian strain 

tensors in the initial and final states are, 

 

ii i i
i

ff f f
f

1
,

2

1
.

2

uu u u
E

uu u u
E

  


   

  


   

   

   

   
        

   
        

 (2) 

Note that summation over repeated indices is implied here and in subsequent equations.  If the 

wave motion is small compared to the initial predeformation, the incremental strain tensor 

between the initial and final states is given approximately by, 

 

i i
f i 1

.
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E E E

    
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             

 (3) 

If it is assumed that the material is hyperelastic, the Lagrangian strain tensor can be related to the 

second Piola-Kirchoff stress tensor via a constitutive equation; here only the second and third 

order elastic constants are retained: 
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 (4) 

Incremental stresses and strains between the initial and final states are related by subtracting the 

above equations and discarding higher order terms,  

 
iT C E C e e       . (5) 

The infinitesimal initial and incremental strain tensors are, 
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. (6) 

Equation (5) is thus the incremental constitutive equation. 

 Consider the equation of equilibrium for the static predeformation and the equation of 

motion for the final state, 

 

i f 2 f
i i f f 0
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, (7) 

where ρ
0
 is the density in the natural state.  The equation of motion for the incremental 

displacement is obtained by subtracting these two equations and neglecting one higher order 

term [21].  The resulting equation of motion for the incremental displacement is, 

 

i 2
i 0

2

u u u
T T T

t

  
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. (8) 

Further simplification is possible by assuming that both the material and the static 

predeformation are homogeneous, and then substituting Eq. (5), the incremental constitutive 

equation, into Eq. (8).  The resulting equation of motion for the incremental displacement is, 
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where 
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. (10) 

Equation (9) appears almost identical to the usual elastic wave equation, but it should be noted 

that A does not have the same symmetries as the stiffness tensor C.  The only symmetry is Aijkl = 

Aklij; in general, Aijkl ≠ Ajikl ≠ Aijlk. 

III. THEORY OF LAMB WAVE ACOUSTOELASTICITY 

Development of the theory to explain the propagation of Lamb waves in pre-stressed plates 

requires combining the equation of motion and constitutive equation developed for bulk waves in 

the previous section with the theory for Lamb wave propagation in an anisotropic plate. The 

equations derived in the process closely match those of Nayfeh and Chimenti [22] for anisotropic 

Lamb waves. 

 The geometry and coordinate system used in this paper are illustrated in Figure 2.  

Referring to the figure, the initial stresses are specified in the primed coordinate system, and a 

Lamb wave propagating along any arbitrary angle φ from the '

1x  direction is considered.  The 

unprimed coordinate system is rotated through the same angle φ to form the primed coordinate 

system, and analysis is performed in the unprimed system to simplify the mathematics.  For an 

applied biaxial stress along the 1x  and 2x  directions, the initial stress tensor can be written as, 

 

11

22

0 0

' 0 0

0 0 0





 
 
 
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T . (11) 
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It is expressed in the unprimed system via a rotational transformation, 

 
i i

ij im jn mnT T   , (12) 

where βij is the cosine of the angle between the xi and the jx  axes.  For convenience, in this and 

subsequent equations, lower case Roman subscripts are used instead of Greek subscripts to 

represent quantities in the natural coordinate system.  In particular, all quantities are expressed in 

terms of the natural coordinates; for example, xj is used instead of ξj. 

 Assuming that the initial strains are small, the constitutive equation relating initial stresses 

and strains given in Eq. (4) can be simplified to, 

 
i i

ij ijkl klT C e . (13) 

For a given applied stress field, the strains in the unprimed system can be calculated by inverting 

this equation.  From this point forward, all quantities are expressed in the unprimed system. 

 The A tensor as given by Eq. (10) can be simplified further by noting that the displacement 

derivatives can be expressed in terms of strains because for the stresses given in Eq. (11), the 

rotation terms are zero for all angles φ.  Thus,  

 

i

ij

jk

k

u
e

x


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
, (14) 

and 

 
i i i i

ijkl ijkl jlmn mn ik ijml km mjkl im ijklmn mnA C C e C e C e C e     . (15) 

The incremental stress-strain relation of Eq. (5) can similarly be simplified to 

 
i i,    k

ij ijkl ijkl ijkl ijml km ijklmn mn

l

u
T B B C C e C e

x


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
. (16) 
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Acoustoelastic Lamb wave propagation for a homogeneous and biaxial stress field requires 

solving the wave equation for the incremental displacements as given by Eq. (9) subject to stress-

free boundary conditions at x3 = ± d / 2 with the tensor A given by Eq. (15) and the stresses given 

by Eq. (16).  This problem differs from Lamb wave propagation in anisotropic media in two 

regards:  (1) as previously noted, the tensor A does not have the same symmetries as the stiffness 

tensor C, and (2) the boundary conditions at the plate surfaces are now written in terms of the 

incremental displacements. 

 Following [22], the approach to solving this problem is to assume solutions of the form, 

 1 3( )i x x ct

j ju U e
  

 , (17) 

where ξ is the wavenumber in the x1 direction, c is the phase velocity along the x1 axis and α is 

the ratio of x3 to x1 wavenumbers.  For a specific value of c, these solutions correspond to 

up-going and down-going bulk waves in the x1−x3 plane of the plate, which are then summed 

together to form the Lamb wave.  This approach is sometimes referred to as the partial wave 

technique [23]. 

 Substitution of Eq. (17) into Eq. (9) yields a form of the Christoffel equations,  

 ( ) 0mn nK U  , (18) 

where the parameters Kmn are given by, 
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,
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
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   
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   

 (19) 
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It can be seen that Kmn=Knm. For existence of non-trivial solutions for the displacement 

amplitudes Un, the determinant of the K matrix must go to zero, which produces a 6
th

 order 

equation in α with six solutions αq, q = 1…6. The coefficients of the odd powers of α are all 

zero, resulting in a cubic equation in α
2
 given by  

 
6 4 2

6 4 2 0   0,P P P P       (20) 

where the coefficients are listed in Appendix A.  For a specific value of the Lamb wave phase 

velocity c, solving this cubic equation yields six values of α, which correspond to three up-going 

bulk waves and three down-going bulk waves. 

 The next step is to satisfy the stress-free boundary conditions on the plate surfaces as per 

Eq. (16).  The approach taken here is similar to that taken in [22], and consists of constructing 

displacement ratios of U2 and U3 to U1 for each of the six values of α, 

 
2 3

1 1

,   ,   1,2 6
q q

q q

q q

U U
V W q

U U
   . (21) 

Equation (18) enables each ratio to be expressed as a function of the Kmn and the corresponding 

αq.  The total displacement field of the Lamb wave is the sum of the displacements of the six 

partial waves, 

   1 3

6
( )

1 2 3 1

1

{ , , } 1, , .qi x x ct

q q q

q

u u u V W U e
  



  (22) 

Similarly, an expression for the stresses can be derived by substituting Eq. (22) into Eq. (16).  

The three stress components in the x3 direction are then written as a sum of stresses due to the six 

individual bulk waves, 

   1 3

6
( )

33 13 23 1 2 3 1

1

{ , , } , , qi x x ct

q q q q

q

T T T i D D D U e
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
 


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where the parameters Dmq are given by, 
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,

,

.
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 (24) 

Applying the stress-free boundary conditions at the surface of the plate requires setting T13, T23 

and T33 to zero at x3 = ± d / 2, and yields six equations in terms of the six displacement 

amplitudes, U1q, of the six partial waves, q = 1,2…6.  The determinant of coefficients must go to 

zero to obtain nontrivial solutions for these six displacement amplitudes.  This determinant is, 

 

11 1 12 2 13 3 14 4 15 5 16 6

21 1 22 2 23 3 24 4 25 5 26 6

31 1 32 2 33 3 34 4 35 5 36 6

11 1 12 2 13 3 14 4 15 5 16 6

21 1 22 2 23 3 24 4 25 5 26 6

31 1 32 2 33 3 34 4 35 5 3
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E

  (25) 

where 
/2qi d

qE e


  and 
/2qi d

qE e


 .  After several number of row and column operations, 

Eq. (25) decouples into two equations,  

 11 1 1 13 3 3 15 5 5( , ) cot( ) cot( ) cot( ) 0,sf c D G D G D G        (26) 

 11 1 1 13 3 3 15 5 5( , ) tan( ) tan( ) tan( ) 0.af c D G D G D G        (27) 

The first equation corresponds to the symmetric modes and the second one corresponds to the 

antisymmetric modes.  In both equations γ = ξd / 2 = ωd / (2c), where ω is the angular frequency.  

The parameters Gm are given as 

 1 23 35 33 25 3 31 25 21 35 5 21 33 31 23,  ,  G D D D D G D D D D G D D D D      . (28) 

Approved for public release; distribution unlimited



Acoustoelastic Lamb Waves  Page 11 

Solving Eqs. (26) and (27) yields the dispersion curves relating phase velocity and angular 

frequency for the symmetric and antisymmetric Lamb wave modes, respectively.  It should be 

noted that solving these equations is not trivial; a brief description of the numerical method is 

given in Appendix B. 

IV. SELECTED ANALYTICAL RESULTS 

This section presents dispersion curves generated by solving Eqs. (26) and (27) numerically for 

specific materials.  The first material considered is 6061-T6 aluminum, which was selected to 

match subsequent experiments.  Material constants used are listed in Table 1, and the third order 

elastic constants were taken from [24].  It should be noted that although third order elastic 

constants are available in the literature for several aluminum alloys [24,25,26], their values are 

quite variable.  It is not clear whether the variability is caused by differences in experimental 

methods or actual material variations.  The second material considered was steel because of its 

widespread use.  Unfortunately third order elastic constants for steel are not widely reported; the 

ones used here are summarized in Table 2 and are for Hecla 37 steel [26]. 

Figures 3(a) and 3(b) present the family of symmetric and antisymmetric dispersion curves 

for aluminum under a uniaxial stress of 
11  100 MPa and for waves propagating at an angle of 

45° to the stress direction; note that the SH0 mode is not shown.  To illustrate the variation of the 

function values as they go to zero, log | ( , ) |sf c and log | ( , ) |af c  have been plotted in the 

background for both plots.  These dispersion curves appear virtually identical to the ones 

obtained using the Rayleigh-Lamb equations for the no-load case since the velocity changes due 

to the applied stress are not noticeable at this scale.  These and all subsequent curves refer to 

phase velocities computed in the natural, or undeformed, coordinate system, which is consistent 

with the derivations of Section III. 
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Figure 4 presents the variation of phase velocity of the S0 mode at 250 kHz with angle for a 

range of biaxial stresses and for a plate thickness of 6.35 mm.  Note that the load is applied along 

the y axis so that waves propagating along the direction of applied load are at 90°.  An interesting 

prediction made by this plot is that the angle at which the phase velocity change is zero (about 

27°) is independent of stress.  It can also be seen that at a specific angle, the change of phase 

velocity is linear with load. 

Figure 5 compares phase velocity changes as a function of frequency for the S0 mode at 

varying unixial stresses 
11  for waves propagating at an angle of 45°.  This plot shows large 

changes in phase velocity for lower frequencies that reduce and flatten in the high frequency 

region.  It is evident that the change of phase velocity is linear with load at a specific frequency. 

 Figures 6(a) through 6(d) compare the phase velocity change with frequency at different 

angles for the S0, S1, A0 and A1 Lamb wave modes, respectively.  The plot for A0 is particular 

interesting in that it predicts isotropic phase velocities for the A0 mode for the frequency-

thickness product of approximately 187 MHz-mm, although at this frequency the velocity 

change from the unstressed condition is non-zero.  This phenomenon should not be confused as  

isotropic wave propagation since the group velocity at this frequency is certainly angle 

dependent. 

Figure 7 is a plot of the S0 and SH0 modes under the influence of applied uniaxial stress 

and shows interesting behavior.  The S0 and SH0 modes split and form two new continuous 

modes at their original point of intersection (from the unstressed case) when a stress is applied.  

Because of symmetry, this splitting does not occur at either 0° or 90°, and is similar to that which 

also occurs for anisotropic materials [27,28].   In the earlier plots, this splitting was not shown to 

facilitate comparison of the perturbed mode to the S0 mode of the unstressed material. 
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Figure 8 shows the A0 mode for steel under a uniaxial stress of 
11  200 MPa.  Steel also 

shows the isotropic phase velocities at lower frequencies for the A0 mode at a frequency-

thickness product of approximately 0.35 MHz-mm.  Additional results for steel are not shown 

because they are qualitatively the same as for aluminum. 

V. EXPERIMENTAL RESULTS 

An experiment was performed to measure changes in phase velocity as a function of applied load 

for various Lamb modes propagating in an aluminum plate with dimensions of 305 mm × 610 

mm × 6.35 mm.  The plate was instrumented with ten PZT discs as shown in Figure 9, and the 

transmitting transducers were excited by a five-cycle Hanning windowed sinusoid.  The 

following three frequencies were utilized to produce an unambiguous first arrival of the indicated 

Lamb wave mode: 250 kHz (S0 mode), 400 kHz (A1 mode), and 600 kHz (S1 mode).  Signals 

were recorded from 9 of the 45 possible transmit-receive pairs as shown in Figure 9(b) at eleven 

uniaxial loads (0 MPa to 57.5 MPa in steps of 5.75 MPa). 

Time shifts were measured by identifying a zero crossing in the center of each direct arrival 

echoes, and then tracking that zero crossing as a function of applied uniaxial load.  For a 

particular time shift, the corresponding change in phase velocity can be calculated as [19],  

 

2

p

p

c t
c

d


   . (29) 

Although there is also a change of distance, it does not appear in Eq. (28) because all 

computations are in the natural, or undeformed, coordinate system. 

Figure 10(a) shows the linear variation of the changes in phase velocity with stress for 

propagation of the three Lamb wave modes along the direction of applied stress (the y axis).  The 

results are further corroborated by experimental measurements using transducer #1 as a 
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transmitter and transducer #6 as a receiver, which show similar linear changes in phase velocity.  

Figure 10(b) shows the variation of phase velocity with angle for the case of uniaxial stress of 

22  57.5 MPa.  The experimental values were obtained by fitting a line to the time shift versus 

load curve, and then calculating the time shift at 57.5 MPa from the linear fit.  Both theoretical 

and experimental data closely follow a sinusoidal profile.  The systematic differences between 

theory and experiment are probably due to the well-known difficulties in accurately obtaining 

third order elastic constants.  The linear dependence of phase velocity changes with load and 

sinusoidal dependence with angle of propagation is expected since that is the case for bulk 

waves, but it is reassuring that both characteristics are validated by both numerical and 

experimental results. 

Figure 11, which us analogous to Figure 12(b), shows the variation of phase velocity with 

angle but with the theoretical curves calculated using different (but plausible) values for the 

TOECs.  For these values, selected as l = -181 MPa, m = -289 MPa, and n = -336 MPa, the S0 

and A1 theoretical curves are in excellent agreement with the experimental data, and the S1 curve 

is in reasonable agreement.  This significant improvement not only supports the speculation that 

the deviation between theory and experiment is largely explained by errors in TOECs, it also 

suggests that guided wave measurements could be used to estimate TOECs.  

VI. SUMMARY AND CONCLUSIONS 

Described here is the theory for acoustoelastic Lamb wave propagation, and both numerical and 

experimental results are shown for the multiple Lamb wave modes.  Unlike bulk waves, the 

acoustoelastic behavior is frequency dependent.  Experimental results that measure changes in 

phase velocity as a function of both load and propagation angle agree reasonably well with 

theory.  Both numerical and experimental data show the expected linear dependence of phase 
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velocity changes with load and sinusoidal dependence with angle of propagation, all at a single 

frequency.  However, systematic differences between theory and experiment clearly indicate that 

additional measurements should be performed to independently measure third order elastic 

constants for the specific material under consideration. 

The robustness of the Lamb wave results as a function of propagation angle suggest that 

Lamb wave measurements may provide an alternative means of measuring third order elastic 

constants.  This would be challenging because unlike bulk wave measurements, there is no 

analytical expression relating third order elastic constants to measured time shifts, much less a 

closed form solution for the inverse problem.  Thus, any means of using Lamb wave data to 

obtain third order elastic constants would have to be numerical in nature with the resulting issues 

of existence and uniqueness. 

Additional experiments are also needed to verify some of the interesting theoretical 

predictions, particularly those shown in Figure 4(c) regarding isotropic phase velocities changes 

in the low frequency region for the A0 mode.  Future theoretical work should consider extension 

of this theory to materials of higher symmetry, which is believed to be straightforward but 

tedious.  In terms of numerical work, there are certain regions in the anti-symmetric spectrum 

that may indicate the presence of roots (SH0 like solutions), although they do not correspond to 

any mode for the unstressed case.  Most likely these are false roots are caused by imperfections 

in the numerical method, but they need further investigation. 
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APPENDIX A.   Polynomial Coefficients 

Coefficients of the 6th order polynomial in Eq. (20) are as follows: 
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Appendix B.  Numerical Method 

This appendix summarizes the steps of the numerical method for solving Eqs. (26) and (27) for 

the symmetric and antisymmetric modes. 

 

The first step is to pick a plate wave velocity c and find the corresponding αq from the 

polynomial in Eq. (20). Next, express Eq. (25) as  

      

11 1 3 5 1 13 3 1 5 3 15 5 1 3 5

11 1 1 3 5 13 3 1 3 5 15 5 1 3 5

( , ) ( , )cot( ) ( , )cot( ) ( , )cot( )

( , , ) ( , , ) ( , , ) 0.

sf c D G D G D G

D H D H D H

         

        

  

   
 (B1) 

For real αq, all Ds, Gs and cotangent functions are real and therefore fs is real. D1q is even in αq, 

D2q and D3q are odd in αq, which implies Gn(αp, αq) is odd in both αp and αq.  Since cot(γαq) is 

odd in αq, Hn(αp, αq, αr) is odd in all three α. For odd functions, the Taylor series has only odd 
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terms and this implies that for imaginary arguments, the value of the odd functions is always 

imaginary. By carefully analyzing the symmetries for all terms it can be seen that for a mixture 

of real and imaginary αs, fs has a value that is purely imaginary or purely real. 

 

Next, based on the values of α, we pick one of two root finding algorithms: 

(1)  For values of c that produce purely imaginary and real values of α: 

 Sweep across ω and find pairs of ω values where the value of fs changes sign (this is not a 

problem since fs values at all ω for this value of c are real or all imaginary).  Each of the 

pairs thus obtained mark intervals in which solutions to the equation fs = 0 are guaranteed 

to exist (and these intervals can be arbitrary small).  These (ω, c) pairs constitute points 

on the dispersion curves. 

 Any real value of α will produce infinities in the cotangent functions.  Since a sign 

change occurs at aninfinity, these are actually false roots that must be handled by 

excluding pairs of ω values that correspond to multiples of nπ in the cotangent functions. 

Cotangents with imaginary values of α do not produce any infinities. 

(2)  For values of c with any complex values of α: 

 Ds and Gs are complex valued and therefore fs is complex valued. Sweep across ω for 

pairs of ω where both the real and imaginary components of fs switch sign together.  Also 

project real and imaginary components of the function value fs on the θ = 45° and θ = 

135° lines and check for sign changes in both projected directions.  This procedure finds 

roots that occur when the curve of fs as a function of ω is tangential to either the real or 

imaginary axis. Either a sign change in both real and imaginary components or ones in 

both projected values yields an interval with a solution.  In general for this case, it is 
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possible to get false solutions but these can be discarded later.  Cotangents corresponding 

to complex values of α do not produce any infinities. 

Finally, points that are nearby in the set of solutions are connected to obtain dispersion curves. 

Ambiguous regions can be scanned with higher resolutions to obtain more points. The exact 

same method applies to the function for antisymmetric modes fa. 
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Table 1.  Material constants for 6061-T6 aluminum [24]. 

 

Parameter Value Units 

 54.308 GPa 

 27.174 GPa 

l -281.5 GPa 

m -339.0 GPa 

n -416.0 GPa 

ρ0 2704 kg/m
3
 

 

 

Table 2.  Material constants for Hecla 37 steel [26]. 

 

Parameter Value Units 

 111 GPa 

 821 GPa 

l -461 GPa 

m -636 GPa 

n -708 GPa 

ρ0 7823 kg/m
3
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Figure 11.  (color online) Comparison of theory and experiment with an applied uniaxial load of 
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Figure 1.  Deformation of a body from its natural (undeformed) state ξ to an initial state of static 

deformation X to a final state of wave motion x. 

 

 

 

Figure 2.  Geometry for Lamb wave propagation in a pre-stressed plate.  Stresses are applied along the 

principal directions in the primed coordinate system, and Lamb waves propagate along the x1 axis. 
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(a) 

 

 

(b) 

 

Figure 3.  (color online) Dispersion curves for waves propagating in aluminum at an angle of 45° to an 

applied uniaxial applied stress of 100 MPa.  (a) Symmetric modes, and (b) anti-symmetric modes. 
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Figure 4.  (color online) Change in phase velocity versus propagation angle for the S0 mode in aluminum 

(thickness of 6.35 mm) at 250 kHz and for different uniaxial loads applied along the y axis (90°). 
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Figure 5.  (color online) Change in phase velocity versus frequency for the S0 mode propagating in 

aluminum at an angle of 45° to various uniaxial loads applied along the x axis. 
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Figure 6.  (color online) Changes in phase velocity versus frequency for waves propagation in aluminum 

at various angles to a 100 MPa uniaxial load applied at 0°.  (a) S0, (b) S1, (c) A0, and (d) A1 mode. 
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Figure 7.  (color online) Dispersion curves for the S0 and SH0 modes for a uniaxial load of 100 MPa and 

propagation at an angle of 45° to the applied load.  The inset plot shows that the modes are mixed and do 

not cross. 
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Figure 8.  (color online) Changes in phase velocity for the A0 mode propagating in steel for a uniaxial 

load of 100 MPa applied along the x axis (0°).  The inset plot shows that the changes are isotropic for a 

frequency-thickness product of approximately 0.35 MHz-mm. 
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Figure 9.  (a) Photograph and (b) sketch of transducers mounted to a 6.35 mm thick aluminum plate.  The 

sketch shows the nine propagation paths used to experimentally characterize acoustoelastic Lamb wave 

propagation. 
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(a) 

 

 
(b) 

 

Figure 10.  (color online) Comparison of theory and experiment for propagation in aluminum (thickness 

of 6.35 mm) with an applied uniaxial load at 90°.  (a) Changes in phase velocity versus load for waves 

propagating at an angle of 90°, and (b) changes in phase velocity versus propagation angle for an applied 

load of 57.5 MPa. 
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Figure 11.  (color online) Comparison of theory and experiment with an applied uniaxial load of 57.5 GPa 

at 90° using modified TOECs (l = -181 MPa, m = -289 MPa, and n = -336 MPa). 
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